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Abstract. We present an example-based algorithm for detecting objects
in images by integrating component-based classifiers, which automaticaly
select the best feature for each classifier and are combined according to
the AdaBoost algorithm. The system employs a soft-margin SVM for
the base learner, which is trained for all features and the optimal fea-
ture is selected at each stage of boosting. We employed two features
such as a histogram-equalization and an edge feature in our experiment.
The proposed method was applied to the MIT CBCL pedestrian im-
age database, and 100 sub-regions were extracted from each image as
local-features. The experimental results showed fairly good classification
ratio with selecting sub-regions, while some improvement attained by
combining the two features, histogram-equalization and edge. However,
the combination of features could to select good local-features for base
learners.

1 Introduction

In this paper, we present an example-based algorithm for detecting objects in
images by integrating component-based classifiers, which automatically se-
lect the best local-feature for each classifier and are combined according to the
AdaBoost[1] algorithm. Our method can be applied to any object composed of
distinct identifiable parts that are arranged in a well-defined configuration, such
as cars and faces. However, we focused on the pedestrian detection in images,
which could be used in driver assistance systems and video surveillance systems.
Pedestrian detection is more challenging than detecting other objects such as
cars and faces, since people take a variety of shapes and it is nontrivial to define
a single model that captures all of these possibilities.

Gavrila[3] employed hierarchical template matching to find pedestrian candi-
dates from incoming images. His method provide multiple templates in advance
that were outline edge images of typical pedestrians, and dissimilarities (or sim-
ilarities) between the edge feature of incoming images were measured by the
chamfer distance. The variety of shapes of pedestrians was accommodated with
the variety of templates, which bound system performance.
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Viola et al.[4] presented a pedestrian detection system that integrated image
intensity information with motion information. Their detection algorithm scaned
a detector over two consecutive frames of a video sequence, and the detector
was trained using AdaBoost to take advantage of both motion and appearance
information. They achieved a high detection speed (about four frames/second)
and a very low false positive rate, while combining two different modalities of
information in one detector.

Although they showed the advantage of integrating motion information, it is
still difficult to apply their algorithm to an on-board pedestrian detection system,
since canceling out the movement of the camera only from visual information
is difficult. Therefore, we focused on pedestrian detection from static images to
achieve our example-based object detection method.

Mohan et al.[2] applied an Adaptive Combination of Classifiers (ACC) to
pedestrian detection. Their system consisted of two stage hierarchical classi-
fiers. The first stage was structured with four distinct example-based classifiers,
which were separately trained to detect different component of pedestrians, such
as the head, legs, right arm, and left arm. The second stage had an example-
based classifier which combined the results for the component detectors in the
first stage to classify the pattern as either a “person” or a “non-person”. A Sup-
port Vector Machine (SVM)[5][6][7] is employed for each classifier. Their results
indicated that combination of component-based detectors performed better than
a full-body person detector. The components in their system were determined
in advance and they were not exactly optimal to classify the examples.

We employed a feature-selection algorithm in the training phase of each
component-based classifier, so that the classifier could automatically select the
optimal component to classify the examples. Mohan et al.[2] pre-defined the num-
ber of the component-based classifiers as four; however, our proposed method
combines a larger number of component-based classifiers with the AdaBoost al-
gorithm.

Our experimental results show that the proposed method achieves a fairly
good classification ratio by selecting a sub-region of the input image, while a
slightly greater improvement is achieved by selecting the optimal feature from
histogram-equalization images and edge images of inputs.

We describe our object detection method in the next section, and the exper-
imental results are presented in the final section.

2 System Configuration

Our key-idea is introducing feature selection and the soft-margin SVM into Ad-
aBoost to enhance the generalization ability of a strong learner by automatically
selecting the best feature for base learners at each boosting step. We describe
our boosting algorithm with feature selection and outline the soft-margin SVM
in this section. We also describe the sample images and experimental conditions
we used for our experiments.



24 K. Nishida and T. Kurita

2.1 Algorithm

Figure 1 presents the overall algorithm for our pedestrian detection system,
which introduces a feature selection algorithm into each step of AdaBoost. We
define a local-feature as the combination of a feature (a characteric extracted
from an input image such as an edge feature) and a sub-region of an input image.
Our feature selection method selects the best local-feature (with the lowest error
ratio) at each boosting step.

1. Let N be the number of samples, M be the number of boosting steps, L be the
number of sub-regions, and K be the number of features. Thus, K×L is the total
number of local-features in the local-feature pool.

2. Generate a local-feature pool for all local-features from input samples x, such as
x → x11, . . . , x1L, x21, . . . , xkl, . . . , xKL.

3. Initialize the observation weights wi = 1/N , i = 1, 2, . . . , N .
4. For m = 1, to M :

(a) For k = 1 to K, for l = 1 to L
i. Fit classifier Gkl

m(xkl) to the training samples of local-feature xkl which
are randomly selected depending on weights wi from all the training
samples

ii. Compute errkl
m =

∑N

i−1
wiI(yi �=Gm(xkl

i ))
∑N

i=1
Wi

.

(b) Set errm with the smallest errkl
m, l = 1, 2, . . . , L,k = 1, 2, . . . , K.

(c) Set Gm(x) ← Gkl
m(xkl) with k and l in the above step.

(d) Compute αm = log((1 − errm)/errm).
(e) Set wi ← wi · exp[αm · I(yi �= Gm(xi))], i = 1, 2, . . . , N.

5. Output G(x) = sign[
∑M

m=1
αmGm(x)].

Fig. 1. AdaBoost with Feature Selection

Initially, features (in our experiment, histogram-equalizaton and edge features
are employed) are extracted from input images and a pre-defined number (in our
experiment: 100) of sub-region images for each feature are generated as a local-
feature pool (Fig. 2) with equal sample weight. In the ith boosting step, the
ith base learner is trained under the sample weights determined by the i−1th
base learner for all local-features in the local-feature pool, and it selects the
best local-feature for ith base learner. The sample weights for the next boosting
step and significance of the base learner are computed according to the error
ratio. Variations in features and sub-regions are determined by a trade-off in the
feasible CPU time and desired precision.

2.2 Boosting Soft-Margin SVM

We employed a soft-margin SVM for the base learner. We will first describe a
SVM briefly followed by a description of the soft-margin SVM.
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The classification function is given as

y = sign(wT x − h), (1)

where x stands for the input vector, w stands for the weight vector of input, and
h stands for the threshold. Function sign(u) is a sign function, which outputs 1
when u > 0 and outputs -1 when u ≤ 0. The SVM determines the separating
hyperplane with a maximal margin (distance), which is the distance between the
separating hyperplane and the nearest sample. If the hyperplane is determined,
there exists a parameter to satisfy

ti(wT xi) ≥ 1, i = 1, . . . , N, (2)

where ti stands for the correct class label for input vector xi. This means that
the samples are separated by two hyperplanes of H1: wT xi − h = 1 and H2:
wT xi − h = −1, and no samples exist between them. The distance between
the separating hyperplane and H1 (or H2) is defined as 1/‖w‖. Determining
parameters w and h that give a maximal margin is defined as an optimization
problem for the following evaluation function

L(w) =
1
2
‖w‖2 (3)

under constraint
ti(wT xi − h) ≥ 1, i = 1, . . . , N. (4)

A soft-margin SVM allows some training samples to violate hyperplanes H1
and H2. When the distance from H1 (or H2) is defined as ξi/‖w‖ for the violating
samples, the sum

N∑

i=1

ξi

‖w‖ (5)

should be minimized. Therefore, a soft-margin SVM is defined as an optimization
problem for the following evaluation function

L(w, ξ) =
1
2
‖w‖2 + C

N∑

i=1

ξi (6)

under constraint

ξi ≥ 0, ti(wT xi − h) ≥ 1 − ξi, i = 1, . . . , N (7)

where C stands for the cost parameter for violating hyperplane H1 (or H2).
Solving this problem with optimal solution α∗, the classification function can be
redefined as

y = sign(w∗T x − h∗)

= sign(
∑

i∈S

α∗
i tix

T
i x − h∗). (8)
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The samples are grouped with α∗
i ; sample xi is classified correctly when

α∗
i = 0, when 0 < α∗

i < C, sample xi is also classfied correctly and is located on
the hyperplane H1 (or H2) as a support-vector. If α∗

i = C, sample xi becomes a
support-vector but is located between H1 and H2 with ξ �= 0.

The kernel-trick, which drastically improved the performance of the SVM, can
also be applied to the soft-margin SVM. In Kernel-Trick, the input vectors are
transformed by non-linear projection φ(x) and linearly classified in the projected
space. Since SVM depends on the product of two input vectors, the product of
the input vectors in projected space can be used instead of computing the non-
linear projection of the each input vector, such as

φ(x1)T φ(x2) = K(x1,x2). (9)

K is called a Kernel Function and is usually selected as a simple function, a
Gaussian function

K(x1,x2) = exp
(−||x1 − x2||2

2σ2

)

(10)

for instance. The classification function can be redefined by replacing input vec-
tors with kernel functions, as follows

y = sign(w∗T φ(x) − h∗)

= sign(
∑

i∈S

α∗
i tiφ(xi)T φ(x) − h∗)

= sign(
∑

i∈S

α∗
i tiK(xi,x) − h∗). (11)

Introducing cost parameter C, we could have two choices to achieve sample
weighing with AdaBoost, the first is building the SVM by defining a cost pa-
rameter as the weight of each sample, the second is re-sampling according to
the sample weights. Schwenk et al.[8] showed that defining a pseudo-loss func-
tion and re-sampling had similar effects with AdaBoost. We therefore selected
re-sampling so that we could use LIBSVM[9] for our evaluation. One thousand
images were re-sampled from 1,400 in the training samples.

2.3 Sample Images and Local Features

We employed the MIT CBCL database for the sample data, which contained
926 pedestrian images with 128×64 pixels, and we collected 2,000 random non-
pedestrian images. We reduced the resolution of all the samples to 64×32 before
we applied them to our system. We extracted histogram-equalization and edge
features from the input images, and local-features were extracted as adequate
sub-regions of the featured images. We selected 100 sub-regions for our evalu-
ation; extracting small sub-regions from input images with a variety of region
sizes such as 4×8 pixels ranging to the whole image.

Figure 2 shows the original image, extracted features, and local features. We
selected 700 pedestrian and 700 non-pedestrian images for training, and 200
pedestrian and 200 non-pedestrian images to test the generalization error.
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Fig. 2. Sample Images and Local Features

3 Results

We first examined the effect of SVM cost parameter C by using a raw input
image with ten sub-regions, such as the whole body, upper half, lower half, right
half, left half, right arm, left arm, head, legs, and center body. Figure 3 plots
error ratio against the number of boosting steps with cost parameter C for 0.1,
0.7, and 100. Ten local features are almost evenly selected at each boosting step.
After 100 boosting steps, test error reaches 4% with C=0.7, 4.5% with C=100,
and 5.25% with C=0.1. Figure 4 plots test error against cost parameter C after 50
boosting steps. Test error records a minimal value of 4% at c=0.7. This indicates
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Fig. 3. Error Ratio for Ten Local-Features
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Fig. 4. Error Ratio against Cost Parameter C

that the soft-margin SVM advantageous to usual hard-margin (or firm-margin)
SVM for boosting; however, there exists an optimal value for cost parameter C.

Figure 5 plots error ratio against the number of boosting steps with cost
parameter C for 0.7, accorcding to the previous results. The experimantal results
were averaged over three trials.

The training error converges to zero at boosting step 5 for histogram-
equalization, and at boosting step 10 for Edge features. This indicates the
histogram-equalization tends to have lower training error than edge features.
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Athough histogram-equalization has the lower training error, edge features has
the lower test error after 100 boosting steps, 3% for edge features and 3.5% for
histogram-equalization.

Combination (Histogram-Equalization, Edge)

Edge

Histogram-Equalization

5 4 4 3 3 3 3 3 3 3

8 6 5 5 4 4 4 3 3 3

7 4 4 4 4 4 3 3 3 3

e

Fig. 6. Example of Selected Local Features
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Selecting the best local feature from the combination of histogram-equalization
and edge features, test error reached 2.7% after 100 boosting steps. Eighty-four
boosting steps selected histogram-equalization for their base-learners, and 16
steps selected edge features. This indicates that the test error is improved by only
16 classifiers selecting edge features, since test error for histogram-equalization
tends to be higher than that of edge feature.

Although we provided 100 sub-regions, only about 50 sub-regions were se-
lected. Figure 6 shows examples of selected local features. This indicates that
pedestrian components are automatically selected by our local-feature selection.
Small sub-regions, which are not meaningful as pedestrian components, tend
to be selected with one feature (such as histogram-equalization or edge), while
large sub-regions, which can be meaningful as pedestrian components, are se-
lected with a combination of the two features. Therefore, the combination of
features selects good local-features.

Table 1. The Error Ratio Comparison

Error Ratio

Gavrila 10-40%�

Mohan 1-2%

Viola 10%

Our Result 2.7-3%

* For first stage

Table 1 compares error ratio against previous research. Our results achieved
a better error ratio than Gavrila and Viola et al., while it was a little worse
than Mohan’s. Considering the difference in non-pedestrian data, we concluded
that our result had almost the same performance as that achieved by Mohan
et al.

4 Conclusion

We presented an object detection method that was achieved by boosting the
soft-margin SVM with feature selection. In this paper, we focused on pedestrian
detection using a combination of two features, histogram-equalization and edge
features. The experimental results showed a fairly good generalization error ra-
tio of 2.7%. The good components were automatically selected by local-feature
selection by the combining the two features.

We had to limit the number of sub-regions to 100 in this paper, because we
had limited computational time to train the classifiers. We are planning to eval-
uate with a larger number of sub-regions to prove our method can automatically
extract good pedestrian components.
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