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ABSTRACT

We propose a novel method for learning that improves gen-
eralization in classifiers based on neural networks. The pro-
posed method consists of (1) adding auto-associative learn-
ing and (2) simultaneously adding independent noise to the
hidden layer of the neural-network. We verify this method
with the classification problem of faces under variable illu-
mination. Considering the interpolation for untrained sam-
ples as the key aspect of generalization, we expect that in
our method, neural-classifiers will (1) learn (nearly) prin-
cipal components of trained samples by auto-association,
and will (2) generate and learn the variated samples from
trained samples (along the axes of nearly principal compo-
nents) by added noise, which leads both to increased amount
of trained samples and (hopefully) to improved generaliza-
tion.

1. INTRODUCTION

How should you generalize when you only have a limited
subset of samples? We hypothesize the following answer:
First, find the principal directions (axes) of variations, then
interpolate and/or extrapolate along those directions.

In this paper, we propose a novel method for learning
that improves generalization in classifiers based on neural
networks and show the plausibility of our hypothesis. The
proposed method consists of (1) adding auto-associative learn-
ing and (2) simultaneously adding independent noise to the
hidden layer of the neural-network (see Fig.1).

Following our hypothesis, we expect that in the pro-
posed method, neural-classifiers will (1) learn (nearly) prin-
cipal components, i.e. principal directions of variances, of
given samples by auto-association, and will (2) generate
and learn the variated samples from given samples (along
the axes of nearly principal components) by added noise,
which leads both to increased amount of (not given, self-
generated) trained samples and (hopefully) to improved gen-
eralization. We apply the proposed method on the classifi-
cation problem of faces under variable illumination.

The synergistic effect of adding both auto-association
and neural-noise simultaneously has not been demonstrated
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Fig. 1. Proposed (right) and conventional (left) architecture
of neural-network-based-classifiers

before, although each of the two has separately been used:
Kurita et al. [1] has added auto-associative learning to neu-
ral classifiers and Kurita et al. [2] has added independent
noise to the hidden layer of the neural network. Related
works concerning generalization are as follows: Bishop [3]
showed that adding noise in the input-space is equivalent to
Tikhonov regularization. Akaho [4] investigated the method
of neural noise to interpolate the training samples. Murray
et al. [5] studied the cases of synaptic weight noise. Tenen-
baum and Griffiths [6] re-casted Shepard’s theory in a more
general Bayesian framework and showed how this naturally
extends his approach to the more realistic situation of gen-
eralizing from multiple consequential stimuli with arbitrary
representational structure. Our proposed method is based
on different viewpoints from those works.

The rest of the paper is organized as follows. In section
2, we show the learning algorithm of the proposed method.
Section 3 gives an overview of the classification problem
of faces under variable illumination and section 4 describes
the experiments and the results. In section 5, conclusion and
remaining tasks are presented.

2. LEARNING ALGORITHM

In this section we present the learning algorithm of the pro-
posed method. (Since most of the algorithm is the same
as [1] except for noise terms, we only show the important
parts. For details, refer to [1].)

Consider a classifier based on a neural network, as de-
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Fig. 2. A classifier based on a neural network with additions
of auto-association constraint and noise upon each of the
hidden layer neurons

picted in Fig.2. The main flow of information is:

xj =⇒U yj =⇒V pj

wherexj is thej-th input pattern (j = 1, 2, ...N ) of M di-
mensional vector to be classified intoK classes,yj is aj-th
internal representation of anH dimensional vector, andpj

is thej-th output ofK dimensional vector. Note thatyj is
both used forzj of M dimensional vector (auto-association
of xj), and is influenced bynj of H dimensional vector,
which is composed ofH independent noise sources.

We use linear neuron model in the hidden layer and
multinomial logit model [7] as the classifier. Multinomial
logit model is a special case of the generalized linear model
[7], and it can be regarded as one of the simplest neural
network model for multi-way classification problems. Re-
lations among the variables are as follows:

yj = Uxj + y0 + nj (1)

pj = f(V yj + p0) (2)

zj = Wyj + z0 (3)

where{U, V andW } are{H×M , K−1×H andM×H}
matrices;{y0 andz0} are bias terms of the same dimension
as{yj andzj}, respectively (p0 is a K − 1 dimensional
vector). LettingK−1×H matrixV be composed of(K−
1) vectors of1×H dimension:vk(k = 1, 2, ...K − 1) and
ηjk = vkyj + (p0)k, the functionf in eq. (2) is computed
as the “softmax” as follows.

pjk = exp(ηjk)/{1 +
K−1∑

i=1

exp(ηji)} (4)

pjK = 1/{1 +
K−1∑

i=1

exp(ηji)} (5)

We also denoterj as(K−1) dimensional vector composed
of (K − 1) elements of eq.(4) excluding theK-th element,
i.e. eq.(5).

Now consider a classification problem withK classes
{C1, C2, ...CK}. Let τ = (t1, t2, ..., tK)T ∈ {0, 1}K de-
note a binary vector composed of teacher signals withtk =
1 if the input is Ck, otherwisetk = 0. ( Also let t =
(t1, t2, ..., tK−1)T ∈ {0, 1}K−1.)

For the training samples{(xj , τj)}N
j=1, the likelihood

of the classifier is given by

P (τ |y) = ΠN
j=1Π

K
k=1p

τjk

jk (6)

For auto-associative learning, the following averaged sum
of squares error between inputxj and its auto-association
outputzj is minimized.

ε2 = (1/N)
N∑

j=1

||xj − zj ||2 (7)

Suppose
∑N

j=1 εj =
∑N

j=1(xj−zj) as Gaussian with zero
mean, then the above minimization is equivalent to the max-
imization of the following.

LA = (−1/2)
N∑

j=1

ε2j (8)

The learning algorithm or update equations of the pa-
rameters{U, V, W, y0, z0, p0} that maximize the sumLC+
LA, whereLC = log P (τ |y) is the log-likelihood of eq.(6)
and LA (eq.(8)) is the log-likelihood of auto-association,
can be written as eqs.(9)- (14).

In the fallowing, we denoteα as the learning rate, con-
catenate each ofN vectors{xj, yj, zj, tj, rj} to form(∗×
N) matrix {xj → X, yj → Y ,zj → Z, tj → T , rj →
R}, and letE = (T − R), F = (X − Z),
G = V T E + W T F

Vnew = Vold + α(EY T ) (9)

Wnew = Wold + α(FY T ) (10)

Unew = Uold + α(GXT ) (11)

(y0)new = (y0)old + α(sum(G)) (12)

(z0)new = (z0)old + α(sum(F )) (13)

(p0)new = (p0)old + α(sum(E)) (14)

In eqs. (12), (13), and (14), we definesum(A) as

sum(A)i =
∑

j

(A)ij .



3. CLASSIFICATION PROBLEM OF FACES
UNDER VARIABLE ILLUMINATION

First, we point out that the purpose of this paper is not to
“ propose the best method for the classification problem of
faces under variable illumination” but we just have selected
this classification problem as an example to prove the ef-
fectiveness of our proposed method. Now we give a brief
overview of this classification problem.

It has been pointed out that “the variations between the
images of the same face due to illumination and viewing di-
rection are almost always larger than image variations due
to change in face identity [8]”. The set of images of an
object in fixed pose but under all possible illumination con-
ditions is a convex cone (termed the “illumination cone”) in
the space of images [9]. When the surface reflectance can be
approximated as Lambertian, this illumination cone can be
constructed from a handful of images acquired under vari-
able lighting and additionally, if the object is convex then
only three “basis images” are required to build the illumina-
tion cone [9].

Representative methods for the classification problem of
faces under variable illumination are “Eigenfaces” by Turk
et al. [10] and “Fisherfaces” by Belhumeur et al. [11].

Recently, Savvides et al. proposed “Corefaces” which,
according to their experiments, achieves almost 100 percent
classification accuracy [12].

4. CLASSIFICATION EXPERIMENTS

4.1. Classification task

Using “Yale Face Database B” [13], we have performed
experiments to confirm the effectiveness of the proposed
method. This database consists of5850 = 10 × 9 × 65
images, taken under 585 viewing conditions (9 poses times
65 illumination conditions) for 10 individuals. We used a
subset of 650 images of the same pose (frontal view). A
fixed window of 240x300 pixel is applied to cut face region
and then resized to 36x45 pixel. Fig.3 shows the samples of
10 individuals. In this paper, a “suit” refers to a set of im-
ages (of 10 individuals) taken under the same illumination
condition. (Each row in Fig.3 corresponds to one “suit”.)

We normalized each image by

x = xraw/||xraw||
wherex is the normalized image andxraw is the original
1620 (=36x45) dimensional vector of input image (pixel-
value).

4.2. Settings of experiments

We compare the proposed neural classifiers with the con-
ventional ones (proposed method = conventional method +
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Fig. 3. Sample images of classification task

‘auto-association’ + ‘neural-noise’). The common parame-
ter is the number of hidden units (H) and we set

H ∈ {20, 10, 3}.

The proposed method has an additional parameters which
determines the magnitude of neural-noise, i.e. uniform noise
in the range of[−s/2, s/2] is applied asnj in eq.(1) We
choose

s ∈ {0, 0.25, 0.5, 0.75, 1.0, 1, 25, 1.5, 1.75, 2.0, 2.5, 3.0}.

Note that whens = 0 this corresponds to the case of ‘no-
noise’ (i.e. adding only auto-association)

For the given 65 suits (total of 650 samples), trainings
and tests are done by the following two conditions:

• 10 suits (100 samples) for training and remaining 55
suits (550 samples) for test

• 20 suits (200 samples) for training and remaining 45
suits (450 samples) for test



In each of these two conditions, trainings of the conven-
tional and proposed neural classifiers are done using the
same parameters (i.e. the learning rate and the number of
training-iterations).

4.3. Results
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Fig. 4. Error counts (left) and ratio-to-conventional (right)
whenH = 20 (i.e. 20 hidden units)
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Fig. 5. Same as Fig.4 whenH = 10

A trial of training and test is done as follows: First, for
the given 65 suits, we divide randomly into ‘10-training-
suits and 55-test-suits’ (or into ‘20-training-suits and 45-
test-suits’). Then after training by 10 (or 20) suits, remain-
ing untrained 550 (or 450) samples are used to test (i.e.
count the number of classification-errors). We perform 100
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Fig. 6. Same as Fig.4 whenH = 3

(and 100) trials and collect the number of classification-
errors.

The left sides of Figs.4-6 show the median (bar-charts’
left) and mean (right) of the error counts. (In those figures,
the top shows 550 samples case and the bottom shows 450
samples case. Horizontal axis in each of those figures means
parameters, except for the leftmost (s = −1) that corre-
sponds to conventional classifier )

The right sides of Figs.4-6 show the median (bar-charts’
left) and mean (right) of ‘the ratios of the error counts of
proposed method to that of conventional method’.

The reason why means sometimes show bigger values
than medians is as follows: In these cases, training did not
converge and these cases resulted in high error counts (out-
liers) affecting the mean values. (The training errors were
always 0 except for these divergent cases.)

From Figs.4 and 5, we can see that the proposed method
with proper range of noise achieved reduction of errors by
almost 50 percent to the conventional method, thus proving
the effectiveness of the proposed method.

The reason why no improvements of generalization oc-
curred whenH = 3 (see Fig.6) is as follows: We need
more than three bases to build the “illumination cone” (see
section 3) and variations in only this 3 dimensional space
are not supposed to be sufficient to make interpolation.

Fig.7 shows the result of a control experiment, where
only neural-noise is added (no auto-association) with other
conditions being the same as those of Fig.5. Note that the
leftmost case (i.e. No auto-association nor neural-noise be-
ing added) is identical with the ‘s = 0’ case (adding only
neural-noise of scale 0).

By comparing Figs. 5 and 7, adding both neural-noise
and auto-association performs better than adding only neural-
noise. More specifically, the minimum of median values for
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Fig. 7. Control experiment of adding only ‘neural-noise’
(i.e. without auto-association) whenH = 10 (cf.Fig.5)

‘ratios’ are as follows: 0.4422 (both) vs. 0.6022 (noise-
only) in 55-suits-tests and 0.2857 (both) vs. 0.5000 (noise-
only) in 45-suits-tests.) Also by comparing the leftmost
cases (i.e. conventional method) with the next-to-leftmost
cases (s = 0, i.e. adding only auto-association) in Figs. 4
and 5, we can see that adding only auto-association slightly
improves the conventional method in those cases (excluding
the divergent ones).

Fig.8 shows an example of the training result for a trial
whenH = 10. In this trial, the conventional method scored
34 errors and the proposed method withs = 1.75 scored
only 1 error. Each row of Fig.8 shows the following (from
the top to the bottom):

1. matrixU by the conventional method

2. matrixU by the proposed method

3. matrixW by the proposed method

4. matrixWV T and vectorz0 by the proposed method

Finally, each of Figs. 9 and 10 shows the effect of added
noise in the hidden layer as follows: The leftmost in the top
row shows an input to the neural network, which is the aver-
age image of an individual over 65 illumination conditions.
The leftmost in the second row shows the auto-association
output under no noise added in the hidden layer. Other im-
ages in the top and second rows show the auto-association
outputs under different combinations of uniform-noise, in
the range[−0.5, 0.5], added to all units in the hidden layer.
Images in the third and bottom rows show the auto-association
outputs when adding noise of scale 1 to only each of one
unit (out of 10 hidden units) separately. From these figures,
adding noise to the hidden layer seems being equivalent to
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hdn 1 only hdn 2 only hdn 3 only hdn 4 only hdn 5 only

hdn 6 only hdn 7 only hdn 8 only hdn 9 only hdn 10 only

Fig. 9. Effect of added noise: examples of ARTIFICIALLY
variated auto-association outputs by the proposed method
usingH = 10
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Fig. 10. Same as Fig.9 for different individual

changing the illumination conditions, which is what we in-
tended to demonstrate.

5. CONCLUSIONS

This paper proposed a novel method for learning that im-
proves generalization in classifiers based on neural networks,
i.e. method which adds both auto-associative learning and
neural-noise to the hidden-layer of conventional neural clas-
sifiers. The effectiveness of the proposed method was demon-
strated by the classification problem of faces under variable
illumination.

The remaining tasks we intend to do are (1) to verify
the proposed method by other classification problems and
(2) to find out the detailed mechanism of how the proposed
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method improves generalization.
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