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Abstract 
 
Function allocation is the design decision to determine which functions are 
to be performed by humans and which are to be performed by machines to 
achieve the required system goals, and it is closely related to the issue of  
automation. Some of  the traditional strategies of  function allocation include 
(a) assigning each function to the most capable agent (either human or 
machine), (b) allocating to machine every function that can be automated, 
and (c) finding an allocation scheme that ensures economical efficiency. 
However, such “who does what” decisions are not always appropriate from 
human factors viewpoints. This chapter clarifies why “who does what and 
when” considerations are necessary, and it explains the concept of  adaptive 
automation in which the control of  functions shifts between humans and 
machines dynamically, depending on environmental factors, operator 
workload, and performance. Who decides when the control of  function 
must be shifted? That is one of  the most crucial issues in adaptive 
automation. Letting the computer be in authority may conflict with the 
principle of  human-centered automation which claims that the human must be 
maintained as the final authority over the automation. Qualitative 
discussions cannot solve the authority problem. This chapter proves the 
need for quantitative investigations with mathematical models, simulations, 
and experiments for a better understanding of  the authority issue.     

Starting with the concept of  function allocation, this chapter describes 
how the concept of  adaptive automation was invented. The concept of  
levels of  automation is used to explain interactions between humans and 
machines. Sharing and trading are distinguished to clarify the types of  
human-automation collaboration. Algorithms for implementing adaptive 
automation are categorized into three groups, and comparisons are made 
among them. Benefits and costs of  adaptive automation, in relation to 
decision authority, trust-related issues, and human-interface design, are 
discussed with some examples. 



Function Allocation 
 
Suppose we are to design a system with specific missions or goals. We first 
have to identify functions that are needed to accomplish the goals. We then 
come to the stage of  function allocation. Function allocation refers to the 
design decisions that determine which functions are to be performed by 
humans and which are to be performed by machines. Various strategies for 
function allocation have already been proposed.   
 
Traditional Strategies for Function Allocation 
 
Rouse (1991) classified traditional function allocation strategies into three 
types. The first category is termed comparison allocation. The strategies of  this 
type compare relative capabilities of  humans versus machines for each 
function, and they allocate the function to the most capable agent (either 
human or machine). The most famous MABA-MABA (what “men are 
better at” and what “machines are better at”) list may be the one edited by 
Fitts (1951), see Table 8.1.  
 
                    Table 8.1  The Fitts List 
 
Humans appear to surpass present-day machines with respect to the 
following: 
1. Ability to detect small amounts of  visual or acoustic energy. 
2. Ability to perceive patterns of  light or sound. 
3. Ability to improvise and use flexible procedures. 
4. Ability to store very large amounts of  information for long periods and 

to recall relevant facts at the appropriate time. 
5. Ability to reason inductively. 
6. Ability to exercise judgment. 
 
Present-day (in 1950s) machines appear to surpass humans with respect to 
the following: 
1. Ability to respond quickly to control signals and to apply great forces 

smoothly and precisely. 
2. Ability to perform repetitive, routine tasks. 
3. Ability to store information briefly and then to erase it completely. 
4. Ability to reason deductively, including computational ability. 
5. Ability to handle highly complex operations, i.e., to do many different 

things at once. 
Note. After Fitts (1951), Hancock and Scallen (1998), and Price (1985).   
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The second type is called leftover allocation. The strategies of  this type 
allocate to machines every function that can be automated. Human 
operators are assigned the leftover functions to which no automation 
technologies are available. 

The third type is named economic allocation. The strategies of  this type try 
to find an allocation that ensures economical efficiency. Even when some 
technology is available to automate a function, if  the costs of  automating 
the function are higher than that of  hiring a human operator, then the 
function is assigned to the operator. 

Note here that the traditional strategies just described consider “who 
does what.” Such design decisions yield function allocations that are static: 
Once a function is allocated to an agent, the agent is responsible for the 
function at all times.  
 
Traditional Strategies Are Not Always Appropriate 
 
Suppose design decisions are made by using either the leftover or the 
economic allocation strategies. The strategies do not reflect any human 
characteristics or viewpoints, and the resulting function allocation may be 
elusive for operators. Some operator may ask, “Am I supposed to be 
responsible for this function, or is the automation?” Also, there is no 
guarantee that the allocations provide the operators with job satisfaction. 

The comparison allocation may be nicer for the operators than either 
the economic or leftover allocations. However, the comparison allocation 
cannot be free from criticisms. Price (1985) and Sharit (1997) claimed that 
the list by Fitts is overly generalized and nonquantitative. Sheridan (2002) 
pointed out that, “in order to make use of  the Fitts MABA-MABA list, one 
needs data that are context dependent, but these data are mostly 
unavailable” (p.59). He argued, referring to the ideas of  Jordan (1963), “the 
idea of  comparing the human with the machine should be thrown out but 
the facts about what people do best and what machine do best should be 
retained,” and “the main point of  retaining the Fitts list is that people and 
machine are complementary” (p.59). A complementary strategy can be seen in 
KOMPASS (Grote, Ryser, Wafler, Windischer, & Weik, 2000).  

Even though the operators are allocated only functions in which people 
surpass machines, the superiority may not hold at all times and on every 
occasion. Operators may get tired after long hours of  operations, or they 
may find it difficult to perform the functions under time pressure. This 
implies that “who does what” decisions are not sufficient, but “who does 
what and when” considerations are needed for the success of  function 
allocation.  
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“Who Does What and When” Decisions: An Example 
 
Aircraft in recent years have become equipped with various automations 
that can perform important functions to make flights safe, smooth, and 
efficient. Lateral navigation (LNAV) and vertical navigation (VNAV) are 
such essential functions. Pilots usually take responsibilities for both LNAV 
and VNAV during takeoff. In the climb phase, pilots may handle LNAV and 
let various automations deal with VNAV. During cruise, pilots often hand 
both LNAV and VNAV over to automation. In descending or landing, 
pilots may seize back control of  either LNAV or VNAV. The two functions 
are allocated in different ways, depending on the situation.   

What happens if  aircraft must be designed in a “who does what” 
manner? No shift of  control is allowed, and there can be only four design 
decisions: first, no automation is needed because the pilots are to handle 
both LNAV and VNAV at all times during flights; second, design the 
automation that performs LNAV for any circumstances; third, design the 
automation that performs VNAV at all times and for every occasion; fourth, 
design the automation that performs LNAV and VNAV all the time during 
flights. It is easy to see that none of  these are practical.  
 
 
Notions Useful for “Who does What and When” Decisions 
 
Sharing of  Control 
 
Sharing of  control means that the human and the computer work together 
simultaneously to achieve a single function (Sheridan, 1992). Three types of  
sharing are distinguishable. The first type is extension, in which the computer 
may help the human so that his or her capability may be extended (e.g., the 
power steering or the power braking of  an automobile), or in which the 
human extends the computer’s capability (e.g., “supervisory override” for 
some types of  aircraft, in which the pilot may add control force when the 
maneuver by the autopilot was not perceived to be satisfactory).  

The second type is relief, in which the computer helps the human so 
that his or her burden may be reduced. A lane-keeping support system for 
an automobile is a good example. The system detects white lane markers on 
the road, and generates torque to assist the driver’s steering action for 
keeping the host vehicle approximately on the center of  the lane (Kawazoe, 
Murakami, Sadano, Suda, & Ono, 2001).  

The third type is partitioning, in which a required function is divided into 
portions so that the human and the computer may deal with mutually 
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complementary parts. A car driver may want to be responsible only for 
steering by letting the computer control the velocity. Partitioning is a 
complementary function allocation. 
 
Trading of  Control 
 

Trading of  control means that either the human or the computer is 
responsible for a function, and an active agent changes alternately from time 
to time (Sheridan, 1992). We have already seen an example on the flight 
deck in which the pilots and the automation trade controls for LNAV and 
VNAV functions occasionally during flights.  

For trading of  control to be implemented, it is necessary to decide 
when the control must be handed over and to which agent. It is also 
important who makes the decision. These issues are discussed later.  
 
Levels of  Automation 
 
Human-computer interactions can be described in terms of  the level of  
automation (LOA), originated by Sheridan and Verplank (1978). Table 8.2 
gives a simplified version (Sheridan, 1992). 
        
Table 8.2  Scale of  levels of  automation 
 
                                                                      
1. The computer offers no assistance; human must do it all. 
2. The computer offers a complete set of  action alternatives, and  
3.     narrows the selection down to a few, or 
4.     suggests one, and  
5.     executes that suggestion if  the human approves, or 
6.     allows the human a restricted time to veto before automatic     

execution, or 
7.     executes automatically, then necessarily informs humans, or 
8.     informs him after execution only if  he asks, or 
9.     informs him after execution if  it, the computer, decides to. 
10. The computer decides everything and acts autonomously, ignoring the 

human. 
(After Sheridan, 1992) 
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Functions that may be Automated 
 
Parasuraman, Sheridan, and Wickens (2000) described human-computer 
interactions by distinguishing the following four classes of  functions: (1) 
Information acquisition, (2) Information analysis, (3) Decision selection, 
and (4) Action implementation. There can be various design alternatives 
regarding to what extent each of  the four functions may be automated. In 
other words, an appropriate LOA must be chosen for each function. The 
automated forms of  functions (1)-(4) are called, respectively, acquisition 
automation, analysis automation, decision automation, and action 
automation. 
    
Acquisition Automation   
 
When the LOA is set at the lowest, human must him/herself  collect every 
piece of  information at all instances. An example of  the automated system 
information acquisition may be radar for automobiles or aircraft, or sonar 
for ships. Sometimes these systems simply collect information and display it 
on the screen. When the computer involves more, certain types of  acquired 
information may be highlighted to attract a human’s attention. Filtering is 
another important capability for acquisition automation. It is well 
recognized that transmitting every piece of  information to the operator may 
lead to undesirable events. For instance, as a result of lessons learned 
following the accident at the Three Mile Island nuclear power plant, some 
alarms may better be suppressed in certain circumstances. This is also the 
case in a commercial aircraft. Suppose an engine catches on fire during 
takeoff. Even if  the sensors detected the fire successfully, the acquired 
information may be filtered. The fire bell will not ring until the aircraft 
climbs to a certain altitude (e.g., 400 feet), or until some amount of  time 
(e.g., 25 seconds) elapses after V1 (the takeoff  decision speed). Until then, 
master warning lights are inhibited.  
 
Analysis Automation   
 
If  the LOA is set at some moderate level, the computer may be able to give 
humans some information by processing available raw data. One example 
of  such information is the prediction of  the future state of  a system. There 
are various examples of  this kind. For instance, in central control rooms of  
recent nuclear reactors, large screens display trend graphs for various 
parameters with their predicted values. When using a notebook computer, 
we can learn a predicted remaining life of  the battery if  we put a mouse 
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cursor on the battery icon. In the cockpit of  an aircraft at a level flight, a 
navigation display may indicate an arc that shows at which point the aircraft 
is to start a descent (or an ascent). If  the pilot changes the flight plan, the 
computer replaces the old arc with a new one. 

Another example of  the analysis automation is a system for integrating 
multidimensional information into an easily understandable form. The 
enhanced ground proximity warning system (EGPWS) for aircraft is such 
an example. The EGPWS was designed to complement the conventional 
GPWS functionality with the addition of  look-ahead terrain alerting 
capabilities. The EGPWS has worldwide airport and terrain databases, and 
they are used in conjunction with aircraft position, barometric altitude, and 
flight path information to determine potential terrain conflict. The terrain 
may be shown on the navigation display in patterns of  red, amber, and 
green, where the colors indicate the height of  the terrain relative to the 
current aircraft altitude (Bresley & Egilsrud, 1997).   
 
Decision Automation   
 
As researchers in naturalistic decision making say, it is often useful to 
distinguish situation-diagnostic decisions and action selection decisions (Klein, 
Orasanu, Calderwood, & Zsambok, 1993; Zsambok & Klein, 1997). For a 
situation-diagnostic decision the operator needs to identify “what is going 
on,” or to select the most appropriate hypothesis among a set of  diagnostic 
hypotheses. Action selection means deciding the most appropriate action 
among a set of  action alternatives. Some expert systems are equipped with 
capabilities to automate situation-diagnostic decisions. When an inference 
has to be made with imprecise information, the expert systems may give 
humans a set of  plausible diagnostic hypotheses with degree of  belief  
information. The LOA of  the expert systems is positioned at levels 2 or 3. 
If, in contrast, the expert systems show humans only a single diagnostic 
hypothesis with the largest degree of  belief  among all, the LOA is set at 
level 4.  

The traffic alert and collision avoidance system (TCAS) is an example 
that can make action-selection decisions automatically. When a mid air 
collision is anticipated and no resolution maneuver is taken, the TCAS gives 
pilots a resolution advisory, such as “climb, climb, climb.” Pilots are supposed 
to initiate the suggested maneuver within 5 seconds. It is known, however, 
that the TCAS can produce unnecessary resolution advisories, though such 
cases do not happen frequently. Pilots may disregard resolution advisories 
when they are definitely sure that the advisories are wrong. In this sense, 
LOA of  the TCAS resolution advisory is positioned at level 4.  
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Action Automation  
 
There are many examples of  automation for action implementation. A 
photocopy machine, described in Parasuraman et al. (2000), is a good 
example for illustrating that various LOAs can be chosen in a single 
machine. Suppose someone needs to quickly make copies of  10 pages for 
five people. He or she must decide which mode to use: automatic sorting 
without automatic stapling, automatic sorting with automatic stapling, or 
manual mode to make five copies of  each sheet. In the last case, he or she 
must sort and staple sheets manually. The time required for giving necessary 
directives to the machine through a touch sensitive panel differs, as does the 
time needed to finish the task. Once a mode has been chosen, operation 
starts at one of  three different levels of  automation.  

In aviation, the LOA of  action is not set high. From the viewpoint of  
action automation, the LOA of  the TCAS is positioned at level 4, because 
the TCAS itself  has no mechanical subordinate to initiate a collision 
avoidance maneuver. The GPWS does not have capability for such a 
maneuver, either. It may be worth considering whether a high LOA should 
never be allowed for automation to implement an action. Take as an 
example the crash of  a Boeing 757 aircraft that occurred near Cali, 
Colombia, in 1995. The pilots performed a terrain avoidance maneuver 
immediately upon a GPWS alert. However, they failed to stow the speed 
brake that they had extended some time before under their previous 
intention to descend (Dornheim, 1996). The crash could have been avoided 
if  there had been an automatic mechanism to retract the speed brake if  it 
had not yet been stowed when the pilot applied the maximum thrust. It is 
hard to imagine a situation where one would apply the speed brake and the 
maximum thrust simultaneously. When automation detects such a 
contradiction, it may be reasonable to allow the automation to adjust the 
configuration automatically (i.e., to stow the speed brake) so that the new 
configuration may fit well to the pilot’s latest intention.  
 
 
Adaptive Automation 
 
Suppose a human and a computer are requested to perform assigned 
functions for some period of  time. The operating environment may change 
as time passes by, or performance of  the human may degrade gradually as a 
result of psychological or physiological reasons. If  the total performance or 
safety of  the system is to be maintained strictly, it may be wise to reallocate 
functions between the human and the computer because the situation has 
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deviated from the original one. A scheme that modifies function allocation 
dynamically and flexibly depending on situations is called an adaptive function 
allocation. The adaptive function allocation assumes criteria to determine 
whether functions have to be reallocated, how, and when. The criteria 
reflect various factors, such as changes in the operating environment, loads 
or demands to operators, and performance of  operators. The adaptive 
function allocation is dynamic in nature. The automation that operates 
under an adaptive function allocation is called adaptive automation. The term 
adaptive aiding is used in some literature such as that by Rouse (1988). In this 
chapter we treat the terms adaptive aiding and adaptive automation as 
synonyms. 
 
Are Adaptive Function Allocation and Dynamic Function Allocation Equivalent? 
 
It depends on the definition. To give contrast to static function allocation, 
dynamic function allocation may be defined as a scheme that may alter function 
allocation occasionally in time during system operation. Then, the dynamic 
function allocation is not always the same as the adaptive function allocation. 
Consider the following case: The pilots were flying northward to the 
destination airport. They had already finished supplying the computer with 
necessary data to make an automatic landing on Runway 01. Suddenly, the 
air traffic controller called the pilots to tell them that, because of extremely 
strong south winds, they had to use Runway 19. The pilots were not very 
pleased with the instruction for the following reasons: (a) they have to pass 
over the airport to make an approach from the north, which causes at least 
10 minutes delay in arrival time; (b) Runway 19 is not equipped with the 
navigation facility for an automatic landing; and (c) the geography north of  
the airport is mountainous. It is highly stressful to make a manual approach 
over mountainous lands under time pressure. However, because there was 
no alternative, the pilots had to disengage the autopilot to fly manually, and 
the flight path management function shifted from the automation to the 
human pilots. The function allocation in this case is dynamic, but not 
adaptive.  

The point is that the adaptive function allocation assumes criteria to 
decide whether function must be reallocated for better or safer performance 
or adjustment of  human workload. It would be almost useless to implement 
dynamic function allocation that is not adaptive. In fact, researchers use 
dynamic function allocation to mean almost the same as adaptive function 
allocation, by assuming some automation invocation criteria implicitly or 
explicitly.    
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History of  Adaptive Automation 
 
The notion of  adaptive allocation can be traced to 1970s: see Rouse (1976, 
1977). Later, Rouse (1988) stated, “The concept of  adaptive aiding … 
emerged in 1974 in the course of  an Air Force Systems 
Command-sponsored project at the University of  Illinois that was 
concerned with applications of  artificial intelligence (AI) to cockpit 
automation” (p.432). The investigators of  the project were initially 
concerned with “getting the technology to work, rather than with how 
pilots were going to interact with this system” (Rouse, 1994, p.28). During 
the research project, the investigators found situations in which the pilot 
and computer chose reasonable but mutually conflicting courses of  action. 
“The desire to avoid conflicting intelligence and create cooperative 
intelligence quickly lead to questions of  function allocation as well as 
human-computer interaction” (Rouse, 1994, p.28). At that stage, they found 
inadequacies, as we did in the previous section, in making design decisions 
on function allocation based on Fitts list. Rouse (1994) says, “Frustration 
with the MABA-MABA approach led to a very simple insight. Why should 
function, tasks, etc. be strictly allocated to only one performer? Aren’t there 
many situations whether either human or computer could perform a task 
acceptably? This insight led to identification of  the distinction between 
static and dynamic allocation of  functions and tasks. Once it became 
apparent that dynamic invocation of  automation might have advantages, it 
was a small step to the realization that the nature of  computer assistance 
could also be varied with the situation” (Rouse, 1994, p.29).  

The adaptive aiding concept was further investigated in the Pilot’s 
Associate program, a joint effort of  the Defense Advanced Research 
Project Agency and the U.S. Air Force, managed by the U.S. Air Force’s 
Wright Laboratory. The Pilot’s Associate consists of  cooperative 
knowledge-based subsystems with capabilities to (a) determine the state of  
the outside world and the aircraft systems, (b) react to the dynamic 
environment by responding to immediate threats and their effects on the 
preassigned mission plan, and (c) provide the information the pilot wants, 
when it is needed  (Banks & Lizza, 1991; Hammer & Small, 1995). The 
program uncovered many gaps in technology and showed “the design of  
adaptive aids has to be based on a thorough understanding of  the other 
activities and functions in the cockpit” (Rouse, 1994, p.30).   
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Automation Invocation Strategies 
 
In adaptive automation, functions can be shared or traded between humans 
and machines in response to changes in situations or human performance. 
How can such sharing or trading capability be implemented? There are 
three classes of  automation invocation strategies: first, critical-event 
strategies; second, measurement-based strategies; and third, modeling-based 
strategies.  

 
Critical-Event Strategies 
 
Automation invocation strategies of  this class change function allocations 
when specific events (called critical events) occur in the human-machine 
system. It is assumed that human workload may become unacceptably high 
when the critical events occur. Allocation of  functions would not be altered 
if  the critical events did not occur during the system operation. In this sense, 
function allocation with a critical-event strategy is adaptive.  

Three types of  logic are distinguished (Barnes & Grossman, 1985; 
Parasuraman, Bhari, Deaton, Morrison, & Barnes, 1992). The first is 
emergency logic, in which automation would be invoked without human 
initiation or intervention. The second is executive logic, in which the 
sub-processes leading up to the decision to activate the process are 
automatically invoked, with the final decision requiring the human’s 
approval. The third is automated display logic, in which all noncritical 
display findings are automated to prepare for a particular event, so that the 
human can concentrate on the most important tasks.  

LOAs differ among the three types of  logic. The LOA for the 
emergency logic is positioned at level 7 or higher, which implies that 
humans may not be maintained as the final authority. In the executive logic, 
the LOA is positioned at level 5. The automated display logic assumes 
sharing (or partitioning) of  tasks. The computer distinguishes “noncritical” 
portions of  the tasks from the “the most important” ones, and it allocates 
the former to machines so that the workload of  operators may be reduced 
or maintained within reasonable levels. The LOA of  the automated display 
logic is set at level 7 or higher, because it is the computer that judges 
whether a task is noncritical or the most important, and operators are not 
usually involved in the judgment. Applying a high level of  automation, such 
as level 7 or above, can be beneficial for reducing workload or for buying 
time. However, it may bring some costs, such as degradation of  situation 
awareness or automation-induced surprises. The issue is discussed in a later 
section. 
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Adaptive automation with critical-event strategies may have several 
operational modes with different LOAs. For instance, the Aegis system has 
a small rule base that determines how the Aegis system will operate in a 
combat environment. The following modes are available (Parasuraman et al., 
1992): (a) manual, in which the system is fully controlled by the operator; 
(b) automatic special, in which a weapon-delivery process is automatic, but 
the fire button has to be pressed by the operator; and (c) fully automated, in 
which the ship’s defensive actions are automatically implemented without 
operator intervention, because of  the need for a short reaction time within 
which the operator may not complete the required actions.    
 
Measurement-Based Strategies 
 
Automation invocation logic of  this class emerged at an early stage in the 
adaptive automation research. Rouse (1977) proposed the dynamic 
allocation of  functions between operators and machines so that the 
moment-to-moment workload of  the operators could be regulated around 
some optimal level. Workload levels of  operators in complex systems 
fluctuate from moment to moment and at different mission phases. The 
operators may be able to achieve very high performance levels but only at 
the cost of  high mental workload by neglecting “less critical” functions. If  
the situation that requires a high level of  workload lasts too long, 
performance degradation may result. Performance may also deteriorate 
when other minor tasks are added. These observations give a rationale to 
adjust function allocation dynamically by evaluating moment-to-moment 
workload. 

However, that does not mean that a single algorithm can be effective 
for all individuals. In fact, different operators will use different strategies to 
cope with the demands of  multiple tasks under time pressure. It is thus 
necessary to develop custom-tailored adaptive automation algorithms if  the 
system is to be compatible with and complement the strengths and 
weaknesses of  individual operators (Parasuraman et al., 1992). Moreover, 
individual differences in human operator capabilities will influence the 
response to multiple task demands: Some operators may have sufficient 
resources left to cope with other tasks, whereas other operators may be 
operating at peak workload. This means that an algorithm developed for an 
“average” operator will not be suitable to either class of  operators. For an 
adaptive system to be effective in maintaining mental workload at an 
appropriate level in dynamic real-time environments, it must be equipped 
with a workload measurement technology that is capable of  (a) detecting 
changes in workload levels and (b) identifying what component of  mental 
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workload is under stressed or over stressed.      
Adaptive automation works as follows under a measurement-based 

measurement strategy (Hancock & Chignell, 1988): First the task is defined 
and structured and subtasks are allocated to either an automated subsystem 
or to the operator. Next, the operator’s effort is compared with the task 
difficulty so as to assign a criterion for adaptivity. The criterion can be 
expressed as a measure of  mental workload, a measure of  primary task 
performance, or a combination of  both. Once the criterion is defined, the 
adaptive system trades task components in order to improve future 
measurement of  the criterion. In the workload-based measurement method, 
adaptivity can be achieved through three main procedures: by adjusting 
allocation of  subtasks between operators and automation; by adjusting the 
structure of  the task; and by refining the task. 

Psychophysiological measures, such as pupillary dilatation and heart 
rate, may be used for adjusting function allocation. The psychophysiological 
measures may be recorded continuously and thus be useful, unlike most 
behavioral measures, in measuring mental activities of  human operators 
placed in supervisory roles that require few overt responses. In addition, the 
psychophysiological measures may provide more information when coupled 
with behavioral measures than behavioral measures would alone. For 
example, changes in reaction time may reflect contributions of  both central 
processing and response-related processing to workload. Refer to Scerbo et 
al. (2001) for the most up-to-date guide for using psychophysiological 
measures in implementing adaptive automation. 
 
Modeling-Based Strategies  
 
Operator performance models can be used to estimate current and 
predicted operator state and to infer whether workload is excessive or not. 
The models are often categorized into three groups: Intent inferencing 
models, optimal (or, mathematical) models, and resource models.  

Intent inferencing models work as follows (Rouse, Geddes, & Curry, 
1987-1988): Operator actions are decoded and compared with the set of  
scripts. If  at least one script matches, the actions are resolved. If  no match 
is found, the unresolved actions are analysed to identify plans. If  one or 
more plans are found that are consistent with known goals, the actions are 
resolved and the scripts associated with these plans (if  any) are activated. If  
no match is found, the unresolved actions are put into the error monitor. 

Optimal models include those based on queuing theory (Walden & 
Rouse, 1978), pattern recognition (Revesman & Greenstein, 1986), and 
regression (Morris, Rouse, & Ward, 1986). For example, Walden and Rouse 
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(1978) investigated multitask performance of  a pilot, where time sharing is 
required between monitoring, control, and other tasks. They modeled the 
monitoring task as a queuing system with a “single server” and subsystem 
events called “customers” and with the control task incorporated as a 
special queue. Once the customers arrive at the control task queue they can 
control the service of  a subsystem event. From what proceeds, a customer 
in this case can be defined as a “significant amount of  display error.” 
Therefore, when a major error is displayed, the subsystem service is 
preempted and a control action is taken to eliminate the error.    

Resource models, especially the multiple resource theory (Wickens, 
1984), try to describe how performance interference occurs in information 
processing. Suppose an operator is trying to perform two different tasks. If  
the two tasks require different resources, say verbal and spatial codes, then 
the operators will have no difficulty performing them efficiently. However, 
if  the two tasks require the same resources, then some conflict can occur 
and performance of  the tasks may suffer significantly. The multiple 
resource theory may be used to evaluate efficacy of  function allocation, or 
to assess the impact of  possible competition that may be caused by tasks 
requiring the same resource. The multiple resource theory is an important 
tool for human-machine system design, and it has already been 
incorporated in discrete-event simulation software, WinCrew, to evaluate 
function allocation strategies by quantifying the moment-to-moment 
workload values (Archer & Lockett, 1997).  
 
Advantages and Limitations of  Automation Invocation Strategies  
 
Among three types of  strategies, the critical-event strategies may be the 
most straightforward to implement, if  critical events are defined properly.  
No investigations are needed regarding how human cognition or behavior 
could be modeled, what parameters must be measured to infer the human 
state, and how. Only we have to do is develop techniques to detect 
occurrence of  the critical event by using information available in the 
human-machine system. A possible limitation of  the critical-event strategies 
is that they may reflect human workload only partially or implicitly. 
Subjective workload under the critical events may differ significantly among 
operators.   

From a viewpoint of  adapting to an individual who is facing with a 
dynamically changing environment, measurement-based logic may be the 
most appropriate. It can change function allocation by explicitly reflecting 
the mental status of  an operator at a specific circumstance. There is no 
need to predict in advance how the mental status of  the operator may 
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change. However, there are a few limitations. First, not all operators may 
welcome situations in which they are monitored by sensing devices all the 
time. Second, sensing devices are sometimes expensive or too sensitive to 
local fluctuations in operator workload or physiological states. Third, 
performance measurement occurs “after the fact” (Scerbo et al., 2001), that 
is, after a point in time when adaptation may be needed. 

If  good performance models are available, it may be possible to extract 
“leading indicators.” Leading indicators refer to precursors that, when 
observed, imply the occurrence of  some subsequent event. For instance, 
Kaber and Riley (1999) demonstrated the benefits of  adaptive aiding on a 
primary task (a dynamic cognitive monitoring and control task) by taking, as 
a leading indicator, degradation of  the secondary task (an 
automation-monitored task). It is not always easy, however, to develop a 
good performance model that represents the reality perfectly. 
 
 
Decision Authority 
 
Who is supposed to make decisions concerning when and how function 
allocation must be altered? The human operator, or machine intelligence? 
Let us note here that the automation invocation strategies can be expressed 
in terms of  production rules: For instance, a particular critical-event strategy 
may be represented as follows: “If  critical-event E is detected, then 
function F must be handed over to the automation, if  the function was 
dealt with by the human at that time point.” In case of  a 
measurement-based strategy, we have the following: “If  human workload is 
estimated to be lower than a specified value, then function F must be traded 
from the automation to the human.” Once the production rules are given, it 
is basically possible for machine intelligence (the computer) to implement 
adaptive function allocation without any help from the human operator. 
However, for some reasons, the reality is not so simple. 

One apparent reason is reliability. It is unrealistic to assume that the 
computer never fails. The failure may be caused by hardware malfunction, 
software errors, or inappropriate data. If  the computer is nevertheless given 
the authority to make an automation invocation decision, human operators 
may have to monitor the computer carefully all the time, which produces 
burden on the operators in addition to their original tasks.      

A second reason is related to the principle of  human-centered 
automation which claims that a human operator must be maintained as the 
final authority and that only he or she may exercise decisions concerning 
how function allocation must be changed and when (Billings, 1997; Woods, 
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1989). The principle is reasonable. However, is it always the best for the 
human operator to bear the final decision authority at all times and for 
every occasion? Rouse (1988) says, “when an aid is most needed, it is likely 
that humans will have few resources to devote to interacting with the aid. 
Put simply, if  a person had the resources to instruct and monitor an aid, 
he/she would probably be able to perform the task with little or no aiding” 
(p.431). There may be cases in which it is rational that “variations in levels 
of  aiding and modes of  interaction will have to be initiated by the aid rather 
than the human whose excess task demands have created a situation 
requiring aiding” (Rouse, 1988; p.432). 
 
Appropriate LOAs 
 
The decision authority issue is related to the selection of  appropriate LOAs. 
When the LOA is positioned at level 5 or lower, the human operator is 
maintained as the final authority (see Table 8.2). The human-centered 
automation principle is violated when the LOA may be positioned at level 6 
or higher. A committee of  the U.S. National Research Council discussed 
appropriate LOAs for new civil air traffic control systems (Parasuraman et 
al. 2000; Wickens et al., 1998). Sheridan (2002) said, “After much debate, the 
committee decided that acquisition and analysis could and should be highly 
automated – in fact, they already are (radar, weather, schedule information, 
etc.) – but that decision-making, except for certain decision aids now under 
development, should be done by human air traffic controllers. 
Implementation is in the hands of  the pilots, which in turn is largely turned 
over to autopilots and the other parts of  the Flight Management System”  
(p.63). The recommended LOA for each function is depicted in Fig. 8.1. 

There are some systems in which the computer may initiate invocation 
of  automation. One such example is the automatic ground collision 
avoidance system for combat aircraft (Scott, 1999). When a collision against 
the terrain is anticipated, the computer gives a “pull-up” warning. If  the 
pilot takes a collision avoidance maneuver aggressively, then the computer 
does not step in any further. If  the pilot does not respond to the warning, 
the computer takes control back from the human pilot and executes an 
automatic collision avoidance action. The LOA is positioned at level 6. 

  A clear-cut answer is hard to get for the decision authority issue. It is 
clear that the issue cannot be solved by qualitative discussions alone. 
Quantitative methods are needed for more precise understanding. The 
following approaches are described with some examples: (a) experiments, 
(b) computer simulations, and (c) mathematical modeling. 
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Fig. 8.1  Recommended LOAs for future air traffic control systems (From 
Parasuraman et al., 2000. ⓒ 2000 IEEE). 
 

 
Laboratory Experiments 

 
Laboratory experiments are usually designed under settings with multiple 
tasks, such as resource management, system monitoring, and compensatory 
manual tracking. Comparisons are made among various strategies for 
function allocation and automation invocation.  Some results suggest the 
efficacy of  the human-initiated invocation strategies, and others suggest the 
need for computer-initiated invocation.  

Hancock, Arthur, and Caird (1991) compared the following conditions 
of  a multitask environment: First, the subjects must perform all tasks 
manually: Second, the tracking task is performed by the automation: Third, 
the subjects can decide whether to invoke automation for the tracking task. 
The investigators found that subjects’ performances in resource 
management task were more efficient when automation invocation was 
initiated by humans. Hilburn, Molloy, Wong, and Parasuraman (1993) 
compared executive and emergency logic in the critical-event strategies, and 
they found a slight automation cost under the computer-initiated 
invocation. 
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Harris, Goernert, Hancock, and Arthur (1994) compared 
human-initiated and computer-initiated invocation strategies, and they 
found that human-initiated invocation of  automation might be less 
beneficial than computer-initiated invocation when changes in the workload 
could be abrupt or unexpected for the human operator. Harris, Hancock, 
and Arthur (1993) also found that, when subjects became fatigued under a 
multiple-task environment, they were less likely to engage automation even 
when it was supposed to be used, which means that the benefits of  
automation may not be fully appreciated if  human-initiated invocation of  
automation is adopted. 
 
Computer Simulations 
 
Furukawa, Niwa, and Inagaki (2001) investigated an optimal LOA for an 
emergency operating procedure for steam generator tube rupture (SGTR) 
failures in a pressurized water reactor. The SGTR failures are typical events 
to be assessed for safety of  nuclear power plants. The emergency operating 
procedure for the SGTR failures has seven steps, each of  which consists of  
several substeps. Among them there is the substep to shut the coolant flow 
at a particular pipe, which requires a sequence of  tasks, such as “send a 
command to close a valve,” “manipulate the valve,” “examine the state of  
the valve,” and so on. The tasks are categorized into four classes, that is, 
information acquisition, information integration, decision selection, and 
control implementation, in a similar manner as shown by Parasuraman et al. 
(2000).   Some strategies of  human-automation collaboration may be 
possible to perform the sequence of  tasks. Furukawa et al. (2001) analyzed 
LOAs positioned at levels 5, 6, and 7. One of  the cognitive task networks 
developed is shown in Fig. 8.2, in which each rectangular node represents a 
task that should be performed either by the automation (denoted as “A-task 
name”) or the human operator (“H-task name”), and in which the LOA is 
positioned at level 5. Each diamond-shaped node is called a decision 
diamond, which can distinguish types of  decision-making logic, such as 
probabilistic, tactical, and multiple decisions.     
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Fig. 8.2  An example of  the cognitive task network  

 
The cognitive task network was implemented with WinCrew, which is 

software for discrete-event simulation. WinCrew quantifies the 
moment-to-moment workload on the basis of  the multiple resource theory 
(Wickens, 1984). Monte Carlo simulations were performed under various 
conditions of  reliability for human operators and automations. It was found 
that the LOA positioned at level 6 was best in the sense that it could 
minimize the expected time for completion of the task sequence. However, 
the LOA positioned at level 6 was not optimal from the viewpoint of  
cognitive workload. The cognitive workload might be quantified in various 
ways, such as by the peak value, the average value, and the time-integral 
value over the whole period of  system operation, and the time length during 
which the workload exceeded a specified threshold value. It was level 7 that 
gave the best result from the viewpoint of  cognitive workload. 

Another interesting computer simulation can be found in Archer, Lewis, 
and Lockett (1996), in which WinCrew was used to model and evaluate 
function allocation strategies of  the bridge activities on a Navy Guided 
Missile Destroyer. Some function allocation strategies were defined for a 
crew of  three and the automation, and workload was evaluated for each 
strategy under several scenarios to investigate the feasibility of  reduction of  
crew size from nine (conventional size) to three.       
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Mathematical Modeling 
 
Inagaki (1997, 1999, 2000) made a mathematical analysis on the decision 
authority issue in a rejected takeoff  problem of  an aircraft. Suppose an 
engine fails while an aircraft is making its takeoff  roll. The pilot must decide 
whether to continue the climb-out (Go) or to abort the takeoff  (No Go). 
The standard decision rule upon an engine failure is stated as follows: (a) 
Reject the takeoff, if  the aircraft speed is below V1, and (b) continue the 
takeoff  if  V1 has already been achieved, and then make an emergency 
landing. The critical speed V1 is called the “takeoff  decision speed” at 
which the pilot must apply the first retarding means in case of  No Go. The 
V1 speed is a variable depending on weight, aircraft lift capability under 
various environmental conditions, length of  runway used in achieving 
velocity, position on the runway at the velocity point, whether the aircraft 
can safely lift off  with one engine failed, and so on.  

The aforementioned rule for a Go/No Go decision is simple. However, 
that does not mean at all that the Go/No Go decision is easy to make, 
because only 1 or 2 seconds are available for the pilots to complete the 
following tasks: (a) recognizing an engine failure alert, (b) analyzing the 
situation, (c) deciding if  the circumstance warrants rejection of  the takeoff, 
and (d) initiating the first stopping action (i.e., retarding the throttles of  all 
engines) to abort the takeoff. A probabilistic model was given on the basis 
of  the following assumptions: 

 
z An alert is given to the human pilot when a sensor detects an engine 

failure. However, the sensor can give a false alert.  
z The pilot’s understanding of  a given situation may not be correct. In 

reality, an engine failure is not a single factor for rejecting the takeoff. 
Various events such as an engine fire with or without loss of  thrust, a 
blown tire, or a bird strike may happen during takeoff  roles. Some of  
these events may give symptoms similar to those of  an engine failure. It 
is not easy to identify the situation correctly when available information 
and time are limited. There may be some cases in which the pilot 
hesitates to say either that the alert is correct or that the alert is false. 

z Incorrect or late decisions cause costs that vary depending on the 
situation. 
 
By evaluating the conditional expected loss, provided an engine failure 

alert has been set off, Inagaki (1997, 1999, 2000) proved that the Go/No 
Go decision should be neither fully automated nor left always to a human; 
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that is, the decision authority of  automation invocation must be traded 
dynamically between human and computer. More concretely, (a) the human 
pilot must be in authority when the aircraft speed is far below V1; (b) the 
computer must be in authority if  the aircraft is almost at V1 and if  there is a 
possibility that the human pilot may hesitate to make decisions when he or 
she fails to decide whether the engine is faulty or not; and (c) when the 
aircraft speed is between (a) and (b), the selection of  an agent in charge 
depends on the situation. 

It was also proven (Inagaki, 1997, 1999, 2000) that, for a human pilot 
to be given decision authority at all times, human-interface design must be 
changed so that the human can be supported directly in Go/No Go 
decision making. The suggested human-interface design was to give either a 
“Go” or an “Abort” message on the display, while an “Engine failure” 
message appears on the display in the glass-cockpit aircraft. When receiving 
the “Engine failure” alert, pilots have to interpret the alert: “Engine failure” 
means “No Go” if  it was before V1, but implies “Go” after V1. It is in the 
interpretation task that human pilots may sometimes make errors.    
Inagaki, Takae, and Moray (1999) found, by experiments, that 
improvements in interface design alone were insufficient to attain 
decision-making accuracy at levels that could be obtained with dynamic 
trading of  decision authority between humans and automation. 

 
 

Benefits and Costs of  Adaptive Automation 
 
Dynamic Alteration of LOAs 
 
One major motivation for introducing adaptive automation is to regulate 
operator workload, where an operator “can control a process during periods 
of  moderate workload, and hand off  control of  particular tasks when 
workload either rises above, or falls below, some optimal level” (Hilburn et 
al., 1993; p.161). Another major benefit of  adaptive automation lies in its 
ability to keep the operator in the control loop, which is done by altering the 
LOA. These characteristics contrast with static function allocation. When 
the LOA for a function is always positioned at high levels, the operator is 
likely to suffer from the out of  the control loop phenomena, which lead to 
degradation of  manual skill, vigilance decrements, and loss of  situation 
awareness for the function (e.g., Endsley & Kaber, 1997; Endsley & Kiris, 
1995; Gluckman, Carmody, Morrison, Hitchcock, & Warm, 1993; Kaber, et 
al., 1999; Parasuraman et al., 1992; Wiener, 1988). When the automation or 
the system is perceived as being “highly reliable,” automation-induced 
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“complacency” may arise (Parasuraman, Molloy, & Singh, 1993), where 
complacency refers to the self-satisfaction that may result in nonvigilance 
based on an unjustified assumption of  satisfactory system state. Occasional 
alteration of  the LOA may be useful to avoid the out of  control loop 
phenomena.  

What happens if  the LOA is altered frequently? If  the algorithm were 
highly sensitive, the LOA would be changed by even a small perturbation in 
the input value to the algorithm. In extreme cases in which only manual 
control and full automatic control are available, frequent cycling between 
automated and manual control may occur, which can lead to performance 
degradation. The short cycling is a possible byproduct of  adaptivity in 
function allocation. Some researchers investigated the effects of  short 
cycling on task performance by use of  laboratory experiments under 
multitask environments. Parasuraman, Bhari, Molloy, and Singh (1991) 
demonstrated both benefits and costs of  short-cycle automation on the 
manual performance of  tasks and on the monitoring for automation failure. 
Glenn et al. (1994) investigated the effects on flight management task 
performance to show no automation deficits, and found automation 
benefits for reaction time in the tactical assessment task. Scallen, Hancock, 
and Duley (1995) analyzed the situations in which tracking task cycled 
between manual and automated control at fixed intervals of  15, 30, or 60 
seconds. The investigators found that excessively short cycling of  
automation was disruptive to performance. 
 
Sharing of  Intentions 
 
As in the case of  conventional automation, possible failure to share 
intentions between the human and the computer is one of  the major 
concerns in adaptive automation. Such failures can be classified into two 
types: The first type refers to the case in which the human and the 
computer have “similar” but different intentions. An example can be seen in 
the crash of  an Airbus 320 aircraft in 1991 near Strasbourg, France. The 
pilots had an intention to make an approach using a flight path angle mode 
of  –3.3 degrees. However the computer, which was the active agent for 
flying at that time moment, was given a command to create an intention to 
make an approach by using a vertical speed mode of  –3,300 feet per minute 
(Billings, 1997; Sparaco, 1994). If  the pilots had carefully interpreted various 
clues given in their primary flight displays, they could have noticed that, 
although the aircraft was descending, the vertical flight path was quite 
different from the one that they had planned. 

The second type of  failure in sharing intentions refers to the case in 

 22



which the human and the computer have completely conflicting intentions. 
An example can be seen in the crash of  an Airbus 300-600R aircraft at 
Nagoya, Japan, in 1994 (Billings, 1997). At some point during the final 
approach, the pilot gave a Go-Around directive to the computer 
unintentionally. The computer started its maneuver for going around. 
However the pilot decided to descend for landing. The pilot knew that the 
autopilot was in the Go-Around mode, but he did not follow an appropriate 
procedure to cancel the mode. Thus the intentions of  the pilot and the 
computer were quite opposite. The computer was ordered by the human to 
go around, and it tried to achieve the go-around at any cost. To the 
computer, the human’s input force to descend was a disturbance that must be 
cancelled out by applying a stronger control input to ascend. From the 
viewpoint of  the pilot, the aircraft did not descend smoothly and thus he 
applied a stronger control input. Thus the aircraft was subject to completely 
contradictory controls by two agents with opposite intentions. 

 
Trust and Automation Surprises 
 
Lee and Moray (1992) distinguished between four dimensions of  trust: (a) 
foundation, which represents the “fundamental assumption of  natural and 
social order that makes the other levels of  trust possible,” (b) performance, 
which rests on the “expectation of  consistent, stable, and desirable 
performance or behavior,” (c) process, which depends on “an understanding 
of  the underlying qualities or characteristics that govern behavior,” and (d) 
purpose, which rests on the “underlying motives or intents” (p.1246). 

For most technological artefacts (gadgets, devices, and machines,  
complex processes), the first dimension shall not cause serious problems. 
The technological systems usually satisfy requirements for the fourth 
dimension of  trust. For instance, it is easy to answer the question, “For 
what purpose did the EGPWS have to be designed?” It would also be the 
case for adaptive automation. That is, human operators would accept the 
designer’s motives or intents to design a technological system that can help 
users by regulating operator workload at some optimal level.  

Respecting the second and the third dimensions of  trust may not be 
straightforward. Because adaptive automation is designed to behave in a 
dynamic and context-dependent manner, its behavior may be obscure. 
Human’s understanding of  the automation invocation algorithms may be 
imperfect if  the algorithm is “sophisticated” or complicated. Suppose there 
are two conditions, A and A*, that differ only slightly. What happens if  the 
human operator thought that condition A had been met, whereas it was 
condition A* that had become true and the automation invocation 
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algorithm detected it? The operator would be surprised when he or she saw 
that the automation did not behave as he or she expected. The phenomena 
in which operators are surprised by the behavior of  the automation are 
called automation surprises (Hughes, 1995b; Sarter, Woods, & Billings, 1997; 
Wickens, 1994). The surprised operators often ask questions such as, what 
the automation is doing now, why it did that, or what is it going to do next 
(Wiener, 1989). When the human could not be sure of  fulfillment of  the 
second and third dimensions of  trust, he or she would fail to establish 
proper trust in the adaptive automation. Human’s distrust or mistrust in 
automation may cause inappropriate use of  automation, as has been 
pointed out by Parasuraman and Riley (1997). 

 
 
Avoiding Automation Surprises 
 
How should we design a system so that it may not cause automation 
surprises? That is the key to success of  adaptive automation. One possible 
way to avoid automation surprises may be to design a mechanism through 
which operators and the automation (the computer) may communicate. 
Two types of  communication are distinguished (Greenstein & Revesman, 
1986; Revesman & Greenstein, 1986). The first is dialogue-based 
communication, in which the operator provides the computer with 
information regarding his or her action plans. The second is model-based 
communication, in which the computer predicts actions of  the operator 
based on his or her performance model, and selects its own actions so as to 
minimize some measure of  overall system cost. Dialogue-based 
communication was found to be advantageous in attaining precise 
understanding and a high level of  situation awareness. However, dialogue 
may increase human workload (Revesman & Greenstein, 1986). 
Model-based communication may not increase human workload. However, 
it may be a new cause of  automation surprises, if  the assumed human 
performance model did not match the operator perfectly, or if  it failed to 
cope with time-dependent characteristics of  operator performance. 
Designing good human interface is the most basic requirement for avoiding 
automation surprises. 
 
Human Interface Design 
 
Human interface must be designed carefully to let operators know what the 
automation is doing now, why it did that, or what is it going to do next. 
Many incidents and accidents in highly automated aircraft show that even 
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well trained operators may fail to understand the intention or behavior of  
the automation (Dornheim, 1995; Hughes, 1995a; Sarter & Woods, 1995). 
Automation technology is spreading rapidly to wider areas of  application in 
which designers may not assume that every operator is substantially trained. 
An automobile is such an example. 
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Ｃ
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    Fig. 8.3  Adaptive cruise control: (a) headway control; (b) cutting in. 
 
Example: Adaptive cruise control system.  Suppose an automobile company has 
a plan to develop an adaptive cruise control system with headway control 
capability, as shown in Fig. 8.3(a). The system is supposed to decelerate its 
own vehicle (O) when it approaches too close to the vehicle ahead (A). 
Designers have to design their system by enumerating various situational 
changes that may occur while driving. For instance, the third vehicle (C) may 
be cutting in between cars O and A, as shown in Fig. 8.3(b). It is important 
for the car O’s driver to know whether the automation sensed the car C or 
not. Suppose the driver thought that the automation had sensed car C and 
had already changed its control law to follow car C, instead of  car A. Then 
the driver may not hit the brakes, instead of  expecting the automation to do 
so. A collision with car C may happen if  the automation had not sensed the 
car C and was still controlling car O longitudinally so that the distance to 
car A might be maintained as specified. This suggests the need for a human 
interface that can show the automation’s recognition of  the situation.  

When designing a human interface for the adaptive cruise control 
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system just described, designers first need to enumerate all the possible state 
vectors, (X, Y), where X denotes the car that the automation tries to follow, 
and Y denotes the car that the driver thinks the automation is following. 
Among all the possible state vectors, some of  them represent cases in which 
the driver and the automation do not share the situational recognition: (A, 
C), (C, A), (-, A), and (-, C) are some such cases, where the minus sign (-) 
implies that the automation has lost the target to follow, which may occur at 
a sharp bend in the road, or when the vehicle ahead changes its lane. Each 
state vector may yield a collision. For instance, in case of  (A, C), collision 
against car C may happen if  the driver of  car O was overly reliant on the 
automation by hoping that the automation would decelerate in a moment. 
Even in case of  (C, C), car O may collide with car C. The collision shall 
occur if  the car C was cutting in too abruptly and too closely to car O. 

In general, fault tree analysis techniques are useful for identifying causes 
of  possible collision for each state vector. Though the methods were 
developed originally for assessing safety or risk of  large-scale systems, they 
are now recognized as useful tools for cognitive task analyses (Kirwan & 
Ainsworth, 1992). Taking a state vector, say (A, C), as the top event, a fault 
tree must be constructed. The first step is to find combinations of  events 
that may cause the top event to occur, where Boolean gates (such as AND 
gates and OR gates) are used in describing how events are combined. The 
process is repeated until no further expansion of  an event is necessary. The 
events at the bottom of  the fault tree are called basic events, which may 
represent various human factors (e.g., human errors, loss of  awareness, 
complacency, or distrust), violations of  laws, hardware/software failures, or 
hostile environmental conditions. The designers have to consider what 
means are available to prevent the basic events from occurring. The 
identified countermeasures must then be examined with theoretical analysis, 
computer simulations, or experiments. The fault trees obtained in this 
process are useful for systematic extraction of  scenarios under which the 
efficacy of  the design decisions must be examined. 
 
 
Conclusion: Toward Sensible Adaptive Automation 
 
Design aspects for adaptive automation are summarized in Table 8.3. The 
first aspect (sharing and trading) may be regarded as physical collaboration 
between human operators and the automation. Required automation differs, 
depending on the type of  collaboration. For instance, in case of  trading, the 
automation must be designed so that it can replace the human completely. 
In case of  partition, the automation is to be designed so that it can cope 
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with every possible partition of  functions. In case of  extension or relief, we 
need a mechanism to add control force on the other agent’s force. 
 
 
     Table 8.3  Design aspects of adaptive automation 
 
  

1.  Sharing control or trading control 
(1) Sharing control   

(i) Extension 
(ii) Relief 
(iii) Partition 

(2) Trading   
 

2.  Automation invocation 
(1) Critical-event strategies 
(2) Measurement-based strategies 
(3) Model-based strategies 

 
3.  Decision authority   

(1) The human is maintained as the final authority at all times  
and for every occasion 

(2) Either the human or the automation may have the final 
authority, depending on the situation 

 
 
 

The second aspect (automation invocation) requires analyses on the 
following:  

(a) availability of  a clear definition on the event in which it is hard for 
any operators to perform assigned functions properly, (b) availability of  
methods to measure indices precisely without placing a heavy burden on the 
operators, and (c) availability and precision of  performance models that 
may represent a wide variety of  operators or that may tune the model 
parameters dynamically.   

The third aspect (decision authority) deals with mental collaboration 
between operators and the automation. The aspect is closely related to the 
principle of  human-centered automation. However, it is not wise to assume, 
without careful analyses, that human operators must be maintained as the 
final authority at all times and for every occasion. 

Theoretically speaking, adaptive function allocation offers more flexible 
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design decisions than static function allocation. This very flexibility, 
however, may bring operators various inconveniences or undesired results 
when the adaptive automation is put into use. Before implementing design 
ideas, adaptive automation designers have to analyze possible consequences 
of  design decisions: 

 
z How do humans feel or respond when they are overridden by the 

automation for safety reasons?  
z Do humans trust in and use the automation that works well but in a 

slightly different manner than anticipated?  
z Do not operators become so reliant on adaptive automation that they 

may be reluctant to take actions themselves?  
z Is appropriate human interface provided with the operators so that any 

automation surprises can be avoided?  
 

These are some of  questions that designers have to ask in the design 
stage. Because adaptive automation is more sophisticated, complex, and 
possibly obscure than conventional automation, the cognitive task design 
must be done seriously. Especially, the decision authority issue can never be 
solved with dogmatic or qualitative discussions. The issue has to be 
investigated in a rigorous manner by applying quantitative methods, such as 
mathematical modeling, computer simulations, and experiments.  

Research on adaptive automation had its origin in aviation, and various 
studies have been conducted in the context of  aviation applications, 
including military applications (Bonner, Taylot, & Fletcher, 2000; Morgan, 
Cook, & Corbridge, 1999). Rouse (1988), Parasuraman et al. (1992), Scerbo 
(1996), Wickens and Hollands (2000), and Scallen and Hancock (2001) give 
good surveys of  those efforts. The adaptive automation concept can be 
applied to other areas, such as process control (Moray, Inagaki, & Itoh, 
2000) and automobiles. It must be stressed here again that the design 
considerations for automobiles must be quite different from those for 
aircraft, large process plants, and military applications. Car drivers are not 
always well trained. They may not have perfect knowledge of the 
automation in their cars. The cognitive task analysis and design must take 
this point into account. 

This chapter took the terms function and task to mean essentially the 
same thing. It is sometimes difficult to discriminate between the two terms 
without any ambiguity (Wickens et al., 1998), although there is a sort of  
hierarchical relation between function and task. Those readers who are 
interested in the hierarchical structure should refer to Sharit (1997).  
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